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ABSTRACT 

A two-dimensional horizontal variable grid is derived that has maximum resolution at the center and minimum 
resolution near the boundaries of the grid. By using the analytic transformation tha t  defines the variable grid, the 
equations of motion for a free-surface model are transformed in terms of new independent space variables in a compu- 
tational domain with constant resolution. Numerical experiments utilize the variable grid to (1) increase the domain 
size with a fixed resolution a t  the center and ( 2 )  increase the resolution a t  the center with a fixed domain size. 

Several finite-difference analogs and three time-integration schemes are tested. For a given domain size and 
number of grid points, several variable grid experiments show superior results in the mass and momentum fields 
compared to  constant grid results. Most variable grid experiments, however, show a small (less than 1 percent) 
inCrease in total energy after 2000 time steps due apparently to the presence of additional nonlinear terms in the 
forecast equations. 

The results show that, although care must be taken with the nonlinear terms, the variable grid may be effectively 
used in certain physical problems to economically gain resolution at the center of the domain. 

1. ~ ~ U ~ ~ D ~ ~ ~ U ~ ~  

In  numerical modeling of atmospheric phenomena that 
have nonuniform variation in space such as cumulus 
clouds, hurricanes, or fronts, it is tempting to economize 
on the computer time and storage required for the calcu- 
lations by utilizing a variable grid. For example, Estoque 
(1962) , Muo (1965), Yamasaki ( 1 9 6 8 ~ ~  1968b) , and Anthes 
(1970) have used variable radial grids in axjsymmetric 
hurricane models. 

Variable grids yield economic dividends in two-dimen- 
sional models; they become a necessity when the physical 
phenomena cited above are considered in three dimen- 
sions. For example, if a 1Q-km horizontal mesh is necessary 
to adequately resolve the inner region of a hurricane, 
arrays of 161 X 161 for each variable are required to cover 
a domain of radius 800 km from the storm center with a 
constant grid. Even with the simplest three-level model 
and a most economic integration scheme, this number of 
grid points is econdmically prohibitive. For the hurricane 
problem, a 10-km resolution is not required over the whole 
domain; in fact, 5@ km or more may be suficient to 
describe the hurricane structure beyond a radius of a few 
hundred kilometers. 

In  the circularly symmetric hurricane models, the 
introduction of a variable horizontal grid presents rela- 
tively few problems. By gradually increasing the separa- 
tion of grid points in the radial direction, the orthogonality 
of the horizontal coordinates is preserved. With two 
horizontal dimensions, however, it is difficult to produce a 
simple orthogonal grid with a gradual increase in mesh 
length away from the center. This paper presents experi- 
ments with a free-surface model using a nonorthogonal 
variable horizontal grid designed primarily( for the hurri- 
cane modeling problem. This grid possesses the following 

properties : 
1. The mesh size, in both north-south, y, and east-west, 

6, directions varies smoothly from a minimum value at  the 
center of the domain to a maximum value along the 
boundary. 

2. The variable grid is derived from an analytical 
transformation so that the “degree of variability” may be 
easily changed. 

3. In  the limiting case, the variable grid collapses to the 
familiar two-dimensional rectangular grid. 

4. The distortion associated with the iionorthogonality 
of the variable grid is minimum at  the center and maxi- 
mum along the boundaries. 

5. The programming of the model is straightforward. 
It should be noted that the use of a variable grid is an 

.attempt to resolve the dilemma between the physical 
requirement of high resolution in one portion of the do- 
main and the economic. impossibility of covering the 
entire domain with a constant grid of this high resolution. 
Of course, a constant grid with fine resolution would be 
superior to a variable grid with fine resolution over only a 
portion of the domain and coarser resolution elsewhere. 

The following sections describe the variable grid, the 
physical model used to test the grid, and a number of 
numerical experiments. 

9. UHE ~ A ~ ~ A ~ ~ ~  GWUD 
The variable grid is derived from a continuous trans- 

formation mapping a horizontal domain, D’ with CO- 
ordinates z’ and Y’, into the horizontal domain D with 
coordinates z and y. Domain D corresponds to the normal 
physical space. The equations defining the transformation 
are 

and 
s=[~,+&J2(z’2+y‘2)112]z’ (1) 

y= [G+ &J2(d2+y’*)’/21y’ (2) 
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where C, and C, are arbitrary constants that determine 
the degree of variability of the grid. Note for Cl=l and 
C2=0 the variable grid collapses to  the normal Cartesian 
grid. The Cartesian grid mesh points, xf, and yii, are 
defined for an N X M mesh by 

xtj= [c, + C ~ ( X ; ~ + + Y ; ~ ) ~ / ~ I X ~ : ; ,  (3) 

yij=[G+G(x;2+yi f 2  112 IYL (4) 

(5) xi=( . j -hq)Ax'  j = i ,  . . ., N ,  
and 

where Ax' and Ay' are the constant grid increments in 
the D' domain. In all experiments, N=M and Ax'=Ay', 
so that the variable grid is symmetric in x' and y'. The 
increment Ax' corresponds to the minimum Ax in the D 
domain. In  determining the properties of the variable 
grid, it is convenient to define the size of the domain 
by a single variable, R,,,, that is the radius of the largest 
circle that can be inscribed in the domain covered by 
the variable grid. This parameter and the minimum 
grid increment, Ax', determine the constants Cl and C2 
(for the NXN grid) : 

A typical example of the variable grid is shown in 
figure 1 for N=41, Ax'=20 km, and R,,,=800 km. The 
resolution varies from 20 km a t  the center to about 60 
km at the corner of the domain. 

At least two approaches to the computational problem 
with the variable grid are possible. The "box method" 
of Kurihara and Holloway (1967) offers one possibility. 
An alternative approach, and the one treated here, is 
to  transform the model equations into their corresponding 
forms with x' and y' as independent variables. These 
new equations then apply to  an orthogonal mesh in x', 
y' space with constant grid increments Ax' and Ay', and 
the finite-differencing problem may be attacked along 
familiar lines. 

3. THE FREE-SURFACE M O D E L  

The physical model.used to test the variable grid is a 
free-surface model of an inviscid, incompressible fluid 
vortex that is confined in a more or less rectangular 
domain. The forecast equations consist of equations of 
motion for the horizontal velocity components and the 
continuity equation. The equations, written in a form 

used by Smagorinsky et  al. (1965), are 

ah +fhv- hg -7 
ahu ahuu ahuv -=---- 
a t  ax ay ax (9) 

(10) 
ah fhu-hg - J  

ahv ahuv ahuv 
a t  ax ay ay 
-=----- 

and 

ah -=-----. ahu ahu 
a t  ax ay 

where the velocities u and v are in the x and y directions 
on a n f  plane, respectively, h is the height of the fluid, 
g is the acceleration of gravity (9.81 m sec-z), and f is 
the Coriolis parameter (5X sec-l). 

The traiisformed equations corresponding to (9) through 
(11) in the x', y' coordinate system are obtained from the 
following expressions 

aF aF ax, aF ayt 
-+7 - ax-axt ax ay ax --- 

and 

where F is any quantity. It is convenient to treat the 
Jacobian terms, which are functions only of space, as map 
scale factors. These terms, computed from equations (1) 
and (2), are 

ax/ 
dY 

a Y  

A421 -= - B/(AC- B2) , 
and 

M22 E-=A/(AC-B') dY' 

where 

From the symmetry of the grid, the following relationships 
hold between the map scale factors: 

406-039 0 - 70 - 3 



Vol. 98, No. I d  81 2 MONTHLY WEATHER REVIEW 
I I I I I I I I I I I I I I I I I I I I I 

X l k m )  

FIGURE 1.-Northern half of the variable grid defined by R,,,=800 km, Ax’=Ay‘=20 km. 

The transformed model equations, using (12)  through 
(14), are 

and 

and 

ahu 

-(M21 a$+M22 -)+jhv ahuv 
aY‘ 

-----(MI1 dhv- g + M 1 2  
at 

(9‘) 

ahv ( ax ,=-(Mil a7+M22 -T - M21 ,+M22 ah ahu 
a!/ 

Equations (9’) through ( 1 1 ’ )  are now in terms of the 
constant, square grid D’ but contain additional nonlinear 
terms that result from the nonorthogonality of the grid 
points in real space. 

For a closed domain, the model equations conserve total 
energy E that consists of the sum of kinetic energy (K)  
and potential energy (P).  These quantities are 

where a denotes area. 

The available potential energy, A, is defined by 

where the overbar operator is 

(-)q I ( ) da (21)  

and the prime symbol denotes departures from this area 
mean. 

The relationship between integrals over the D and D’ 
domains is 

where the Jacobian of transformation is 
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The finite-difference form of equation (22) used to eval- 
uate (18) and (20) is 

ERROR ANALYSIS FOR VARIABLE GRID 

To compare the relative truncation errors from the 
constant and variable grids, consider the term dF/ax 
and its transformation in one dimension, Mll(dF/ar‘). 
For a constant grid, it is well known that centered differ- 
encing has second order accuracy, that is, 

where f is some point between xi-1 and x ~ + ~ .  If the cor- 
responding term is evaluated in the x’ coordinate system, 
where again the spacing is uniform, 

where E‘ is between x ; - ~  and x;+~. For the transformation 
defined by equation ( l ) ,  the relationship between 8 F / a 2  
and 8 F / a x t 3  is 

Thus the error in the constant grid, E,, is bounded by 

and t,he error in the variable grid, E,, is 

(29 1 

bounded by 

where e,,,, and .&Guz, and E;,,, are values in the appropriate 
intervals that maximize the second ahd third derivative 
terms. As expected, the accuracy of the centered differ- 
encing in the variable grid is no longer second order, 
and any gain in accuracy must result from the fact that 
Ax‘2< Ax2. 

FINITE-DIFFERENCE EQUATIONS 

The finite-difference equations corresponding to (9’) 
through (11’) for the main set of experiments comprise the 

total energy conservative momentum” scheme used by 
Grimmer and Shaw (1967) and tested as “scheme B” in 
( (  

Grammeltvedt’s (1969) paper.’ In  the present paper, this 
scheme is designated as “method I.” I n  Shuman’s (1962) 
notation 

Lyr=L Ax [a (Xj++3 (xj-%)] 

and 

2= t [a (xj+%)+a (xj-$)], 

the finite-difference equations are 

-2 -2 -u -u a t - - -  a(hu)ti- [ M l l f j  (hu u ),+Ml2,, (hu u ),I 

-z -z -u -u 
a(hV)ii- [Mll j j  (hu v )Z+M12ij (hu v ),I at-- 

In  writing (32) through (34), we have used equation (16) 
and dropped the primes in the x’ and y‘ notation for 
simplicity . 

INITIAL CONDITIONS 

The initial conditions consist of a gradient vortex. The 
height field is computed from 

where Hrim is the height (1005 m in these experiments) of 
the “undisturbed” fluid a t  infinite distance from the 
center and r is the distance from the center. The u and v 
components are then computed from 

and 
u= -Vx ylr 

v=Vx xJr 

where Vx is the tangential velocity computed from 

V,=- -++ f2r2+4g x-+y- ah jr 2 J ( ax a J  (37) 
ah 

1 Although the right-hand sides of equations (32) through (34) conserve total energy, 
truncation error in the time integration scheme may lead to changes in total energy, as 
pointed out by Grammeltvedt (1Y69). 
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with 

and 

MONTH LV WEATHER 

(38) 

Figure 2 shows the initial heights and the u components 
for the northern semicircle. This initialization scheme 
will generate rather large amplitude gravity waves 
initially, because the finite-diff erence equations do not 
satisfy the gradient wind equation. However, this feature 
is not particularly undesirable in these experiments 
because one of the objects is to  test the behavior of 
high-frequency and small-scale disturbances on the 
variable grid. 

4. RESULTS 
CONSTANT GRID EXPERlMENTS 

The first series of experiments utilize a constant grid 
with 20-km resolution to study the effect of lateral bound- 
ary conditions, to compare the leapfrog time integration 
scheme with the Matsuno (1966) scheme, and to serve as a 
basis of comparison with the variable grid calculations. 
For a summary of all experiments, see table 1 .  

Experiments 1 and 2 compare results from two lateral 
boundary conditions. In experiment 1 , the boundary 
conditions are chosen to yield zero mass change over the 
interior of the domain and so that the normal derivatives 
of the tangential component of the wind and the heights 
are zero along the boundary. The conditions are 

VnB=- VnB+li 

(39) 

where the subscripts n and t represent normal and tan- 
gential components along the boundary, and B and B+1 
represent values on the boundary and a t  the adjacent 
interior grid points, respectively. In  experiment 2, the 
values on the boundary are given for all time by the ana- 
lytic steady-state solution of gradient balance. Both 
experiments utilize the leapfrog time integration scheme 
with a time smoothing operator (Smagorinsky et al. 
1965) defined by 

(p"-'+2 p"+pn+l) (40) 

where p is any forecast quantity and the superscripts refer 
to the time step. This smoothing is applied every 100 
time steps to suppress the computational mode. 

Figures 3 and 4 show the height fields after 1000 steps 
(25 hr) for experiments 1 and 2. Both distributions are 
irregular away from the center of the vortex. The heights 
associated with the analytic boundary conditions appear 
to be qualitatively closer to the initial (true) heights. 

REVIEW Vol 9 3 ,  N9. 41 
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FIGURE 2.-Initial data for the northern half of the domain; (a) 
analytic heights minus 1000 m and (b) the east-west velocity 
component (u) computed from the finite-difference analog to the 
gradient wind equation. 

Compare-figures 4 and 2a. The momentum structures in 
the two experiments are quite similar, as shown by the 
plot of the u, component along the north-south axis in 
figure 5. 

The time variation of the central height, ho, and the 
energy budget for experiments 2 and 3 are shown in 
figure 6. Although the central height oscillations are 
greater in the case with analytic boundaries, the oscilla- 
tions in the energy budget are greater in the case in which 
total mass is conserved exactly. The reasons for this 
paradox are obscure. Possibly the steady-state boundaries 
prevent large space oscillations from developing near the 
boundaries, resulting in smaller variations in the energy 
budget. The difference in the central height oscillations 
may be related to different reflective properties of the 

Although experiment 2 with analytic boundaries does 
not conserve mass exactly, T, remains nearly constant 
with time, oscillating between 1004.5546 and 1004.5622, 
representing mass changes of less than 0.0005 percent. 
Because of the smoother height field in experiment 2, 
therefore, future experiments are computed with the 
analytic s teady-state boundaries. 

Both experiments 1 and 2, which utilize the leapfrog 
time integration scheme, show considerable small-scale 
irregularities in the height field after 1000 steps. The 
high-frequency oscillations in the central height (fig. Sa) 
suggest that these irregularities result from high-fre- 
quency gravity waves. The concentration of the energy 
in the short wavelengths is an undesirable result of non- 
linear interactions in the equations. 

The Matsuno (1966) integration scheme, although only 
of first-order accuracy, provides a selective time trunca- 
tion, with high-frequency waves suffering the greatest 
damping, It has been used extensively by Leovy and 

walls." I (  
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TABLE 1.-Summary of all experiments 

Energy budget after 25 hr (10lom6 sec-a) 
Exp. no. Min hz BmaZ Grid At Boundary Time integration Space finite - 

(km) (km) type (see) conditions scheme differences Nsteps aK M A(A+K)t Change 
(%I 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

12 
13 

20 
20 
20 
20 
20 
20 
20 
20 
40 
10 
10 

10 
10 

400 
4w 
400 
442 
5M) 

600 
800 

1200 
800 
800 
800 

800 
800 

C* 
C 
C 
V 
V 
V 
V 
V 
C 
V 
V 

v 
v 

90 
90 
90 
90 
90 
90 
90 
90 

180 
45 
45 

45 
45 

Mass-conserva tive 
Analytic 

Leapfrog 

Matsuno 

Lax-Wendroff 

Method I 

Box method 

Shuman avg. 
Box method 

continuity eq. 

continuity eq. 

lo00 
lo00 
lo00 
1000 
1000 
1000 
lo00 
1000 
500 

2000 
2000 

2000 
m 

-3.0 -8.8 -11.8 
1.0 -8.3 -7.3 

-12.7 -5.1 -17.8 
-1.8 -5.1 -6.9 
14.2 -5. 1 9.0 
40.6 -5.0 35.6 
72.2 -3.0 69.2 
34.1 4.4 38.6 

-18.4 -12.9 -31.3 
128.4 60.9 189.4 

66.3 . 5  66.8 

80.0 2.6 82.6 
-5.4 -4.1 -9.6 

-0.07 
-. 04 
-. 11 
-. 04 

.05 

.21 

.40 

.22 
-. 21 
1. 11 
.39 

.48 
-. 06 

*C=constant and V=variable. $Because of roundoff, the sum of AK and M may not exactly equal A(A+K). 

N = io00 
MASS CONSERVATION T= 25 HOURS 

H-1000 ( m )  

FIGURE %.-Height field after 1000 steps (25 hr) for experiment 1 
(constant grid, mass conservative boundaries). 

Mintz (1969) in a general circulation model. If the 
irregularities in experiments 1 and 2 are due primarily to 
high-frequency waves, the Matsuno scheme should pro- 
duce smoother fields. One step of the Matsuno scheme 
for one variable is summarized below for the equation 
aa/at= F ( ~ )  : 

1. Given a", 
2. Forecast first guess of an+', denoted by a*, from 

a*= a"+ AtF(a"), and 
3 .  Forecast final estimate of a"+l by an+l=a"+AtF(a*). 

Any improvement using the Matsuno scheme over the 
leapfrog scheme is at  the expense of an increase by a 
factor of 2 in computational time. 

Experiment 3 is identical to experiment 2, except that 
the Matsuno differencing scheme is utilized in experiment 
3. Figure 7 shows the height field after 25 hr for experiment 
3.  Unlike the fields in experiments 1 and 2 (figs. 3 and 4), 
the height field in experiment 3 is very smooth and 
symmetric. The momentum fields (not shown) are also 
smoother. 

N = 1000 
ANALYTIC BOUNDARIES T = 25 HOURS 

300 
4.5 4.5 
:J f<J 

X ( k m )  

FIGURE 4.-Height field after 1000 steps (25 hr) for experiment 2 
(constant grid, analytic, steady-state boundaries). 

The high-frequency oscillations in central height and 
in the energy budget in experiment 2 are absent in experi- 
ment 3 (fig. 8). The damping of these high-frequency 
waves, while yielding smoother height fields, has little 
effect on the momentum profiles, as show'n in figure 5. 
Thus, the Matsuno scheme is beneficial from a computa- 
tional viewpoint without significantly altering the 
physically important solutions. Therefore, subsequent 
experiments utilize this time integration scheme. 

VARIABLE GRID EXPERIMENTS 

Two series of experiments are utilized to study the 
properties of the variable grid. The first approach studies 
the effects of changing domain size while holding the 
minimum space increment fixed at  20 km. The second 
approach studies the effect of changing the minimum 
resolution with a constant domain size of 800 km. In  all 
cases, the number of grid points is the same (41x 41). 

VARIATION OF DOMAIN SIZE 

In experiments 3 through 8 (table l), the domain size 
defined by R,, is progressively increased from 400 km 
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FIGURE 5.-Radial profile of the u component along the north-south 
axis for the constant grid after 1000 steps (25 hr) for dxperiments 
1 (leapfrog, mass conservative boundaries), 2 ( leapfrog, analytic 
boundaries), and 3 (Matsuno, analytic boundaries). 

(constant grid) to 1200 km. The resolution at  the center 
of the domain in these experiments is 20 km; thus the 
gain in domain size is accompanied by a loss in resolution 
away from the center. The profiles of the u component 
along the north-south axis after 25 hr (1000 steps) for 
experiments 3, 5, 7, and 8 are shown in figure 9. The 
variable grid calculations show good agreement with those 
for the constant grid. 

Although the momentum profiles agree quite well, 
there are significant differences between the energy 
budgets associated with the constant and variable grids. 
Figure 10 shows the change from the initial values of 
the sum of available and kinetic energy for experiments 
3 through 8. Whereas the change associated with the con- 
stant grid shows only slight oscillations, the changes 
associated with the variable grids show progressively 
increased amplitude as the distortion increases with 
increasing domain size. This increase in energy appears 
to be caused by the additional nonlinear terms that 
arise in the variable grid equations. Note, however, that the 
maximum changes over 1000 steps are less than 1 percent 
of the original total, even for the 1200-km domain experiment. 

The results from experiments 3 through 8 suggest that 
the variable grid may be effectively used in certain cases 
to economically increase the size of the domain, at least 
for short integrations. The increase of energy in the shorter 
wavelengths associated with the additional nonlinear 
interactions in the variable grid cases, while undesirable, 
is fairly small, even though neither diffusion terms nor 
space smoothing has been used. It is probable that this 
difficulty would be less significant if a diffusive term were 
included in the equations or if a smoothing technique were 
used periodically to damp the short waves. 

ATHER REVIEW VOI. 98, NO. i a  
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FIGURE 6.-(a) the central height for time steps 900-1000 for the  
constant grid experiments 1 (mass-conservative boundaries) and 
2 (analytic boundaries); (b) the changes from initial values of 
kinetic and available potential energy for experiments 1 and 2. 

VARIATION OF MAXIMUM RESOLUTION 

In  experiments 7, 9, and 10, the domain size remains 
constant at 800 km, and the maximum resolution at the 
center varies from 40 km (constant grid) to 10 km (table 
1). The time step At varies according to 

-_ " -4.5X10-3 sec m-'. 
Ax' 

Figure 11 shows the profiles of the u component along 
the north-south axis for the experiments with maximum 
resolution of 40, 20, and 10 km after 25 hr (500, 1000, and 
2000 time steps, respectively). By comparison with the 
analytic profile beyond 20 km, the variable grid results 
are superior to the constant grid results in the inner 
200-km region. Beyond 200 km, the profiles axe nearly 
identical. Figure 12 shows the height fields for the 40- 
and 20-km maximum resolution cases. For the given 
domain size and number of grid points, the constant grid 
is unable to resolve the detail near the vortex center. The 
4.5 contour is also more irregular in the constant grid case. 
Although the variable grid with resolution of 20 km shows 
substantial improvement in the height field, a further 
increase in maximum resolution to 10 km results in a 
deterioration in the height field (fig. 13) presumably due 
to an increase in distortion. 

The u components (fig. 14) show further evidence of 
the superiority of the 20-km variable grid over the 40- 
km constant grid. Not only does the constant grid fail 
to resolve the easterly maximum near the center but also 
westerlies have appeared in several locations in the 
northern semicircle. In  contrast, the variable grid shows 
easterlies throughout the northern semicircle and n 
maximum easterly velocity of over 3 m sec-I. The u 
components for the 10-km variable grid (not presented) 
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FIGURE 7.-Height field after 1000 steps (25 hr) for experiment 3 
(constant grid, Matsuno integration scheme). 

show additional improvement over the 20-km variable 
grid results by resolving a maximum of 4.2 m sec-'. 

The energy budget for experiments 7, 9, and 10 is 
summarized in figure 15. As in the experiments varying 
domain size, increased distortion of the variable grid 
produces a gradual increase in available potential and 
kinetic energy (see also table 1). The nearly monotonic 
increase in total energy associated with the 10-km niaxi- 
mum resolution experiment suggests that, without smooth- 
ing in space or diffusion terms, 2000 steps are about the 
limit of useful computations. 

When summarizing the experiments with constant 
domain size, increasing the resolution near the center 
through the use of the variable grid from 40 to 20 and 
finally 10 km results in a substantial improvement in 
the velocity fields after 25 hr. The height distribution in 
the 20-km experiment is also qualitatively superior to 
the distribution in the 40-km experiment. In the 10-km 
experiment, however, increased nonlinear interactions 
produce a height distribution with space oscillations of 
wavelength 2Ax and 2Ay that lead to  a large increase in 
the available potential energy. 

The general success of the variable grid in accurately 
forecasting the mass and momentum for up to 2000 
forecast steps warrants further effort to improve the 
behavior of the total energy budget, which shows a slow 
increase due to nonlinear effects. The next section ex- 
amines additional differencing schemes and compares 
the results of each with those of experiment 10. 

ADDITIONAL EXPERIMENTS 
WITH A TEN-KILOMETER VARIABLE GRID 

In an effort to  improve the behavior of the energy 
budget, experiment 10 is repeated with several different 
finite-diff erencing schemes and an additional time inte- 
gration scheme. The selection of schemes is based on the 
results of the previous experiments and the experience 
of other investigators (for example, Shuman and Stack- 
pole 1968 and Grammeltvedt 1969). Experiment 10 is 

I I I I I I I I I I I 
900 910 920 930 940 9% 960 970 900 990 Iwo 

N 

FIGURE %-(a) the central height for time steps 900-1000 for the 
constant grid experiments 2 (leapfrog) and 3 (Matsuno); (b) the 
changes from initial values of kinetic and available potential 
energy for experiments 2 and 3. 

chosen as a standard for comparison because the behavior 
of the energy budget in this experiment was the worst 
of all the experiments. 

The first alteration in the difference equations affects 
only the continuity equation and is suggested by noting 
that the primary contribution to  the rapid increase in 
the total energy in experiment 10 beyond 1000 steps is 
the increase in available potential energy. We thus re- 
place equation (34) with a finite-difference equation in 
flux form that conserves mass exactly and is analogous 
to Kurihara and Holloway's (196v) "box method." The 
complete set of equations is, therefore, no longer total 
energy conserving. 

When considering the ijth grid point to be the center of 
a nonrectangular box, the continuity equation may be 
written as 

(41) 
ah hVns 1 + hV,~z+ hV,ss+hV,s* 
at' area of i j th box 

where V,  is the component of the mean vector velocity 
that is normal to any particular side of length st of the 
box. The geometric relationships are 

Vn=un+vn, (42 ) 
u,= B (A2 + B2) -'"u, 

and (43 1 
v,=A (A2+ B2) -'% 

along the north-south sides of the box, and 

u,= C( @+ B2) -l12u 

and (44) 
vn = B (c2+ B2) -1% 

along the east-west boundaries of the box. 
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FIGURE 9.-Radial profiles of the u component along the north-south axis after 1000 steps (25 hr) for experiment 3 (constant grid, R,,,=400 
km), experiment 5 (variable grid, R,,,=500 km), experiment 7 (variable grid, R,,,=800 km), and experiment 8 (variable grid, R,,,= 
1200 km). 
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N S t e p s  

FIGURE lO.-Changes from initial value of the sum of kinetic and 
available potential energy for experiments investigating various 
domain sizes with a fixed central resolution of 20 km. 

The length sI is obtained from 

Similarly, 
s2 = (A2+ B2)*/2Ax’, 

s3 = ( B2+ C)1’2Ay‘, 

s4 =(A2+B2)1/2Ax’. 
and 

The area of the ijth box is approxima-jly 

area,= (AC-E!) Ax’ Ay‘, (47 1 
and the relationship of A, B, and C to the map scale factors 
is 

and (48) 

Substituting equations (42) through (46) into (41), the 
finite-diff erence form of the continuity equation becomes 

A= M22/ (MI 1 M22 -MI 29, 
B=M12/(M11 M22 --M122) , 
Q=Mll/(Mll M22 -M122). 

vi+l j+vi j 
- [ 4 + * 9  2 

+Bi+t, ui+15+ui1] 2 A d  ) /(AC-B2)fjAx’Ay‘. (49) 

Experiment 11 is identical to experiment 10 except that 
equation (49) replaces (34) in computing the height tend- 
encies. The energy budget of experiments 11 and 10 may 
be compared in figure 15. Although the total energy in- 
creases gradually in experiment 11, the rapid increase 
after 1000 steps found in experiment 10 (due primarily 
to the increase in available potential energy) is not pres- 
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FIGURE 11.-Radial profile of the u component along the north-south axis after 25 hr for experiments 9 (constant grid, resolution=40 km) 
7 (variable grid, maximum resolution=20 km), and 10 (variable grid, maximum resolution= 10 km). 

ent in experiment 11. Note that the change in available 
potential energy in experiment 11 is 0.5 unit compared to 
60.9 units in experiment 10 (table 1). The amplitude of 
the 2Ax and 2Ay oscillations in the height field (not shown) 
are reduced from about 0.5 m in experiment 10 to less 
than 0.1 m in experiment 11. The use of the box method 
in representing the continuity equation, therefore, results 
in a substantid improvement in the forecasting of the 
height field, with no additional computation time. 

'The third set of finite-difference equations tested is an 
averaging scheme used by Shuman and Vanderman (1966) 
and found to give very good results as "scheme H" in 
Grammeltvedt's (1969) series of experiments. This method 
essentially consists of averaging x-differentiated quantities 
over y, y-differentiated quantities over x, and unditFer- 
entiated quantities over x and y. The finite-difference 
analog to equation (9') is 

--- xu- 
at 

Experiment 12 is identical to  experiment 10 except that 
the Shuman averaging scheme is used for all three forecast 
equations. The energy budget for experiment 12 is shown 
in figure 15 and summarized in table 1. An improvement 
over experiment 10 is again evident in both the kinet.ic 
and available potential energy budgets. However, the re- 
sults are slightly inferior to experiment 11. The averaging 
scheme has the disadvantage of requiring about twice as 
much computing time as either of the previous differenc- 
ing schemes. This twofold increase does not seem to be 
warranted from a comparison of experiments l O , l l ,  and 12. 

In  the final experiment, the two-step Lax-Wendroff 
time-integration scheme is used instead of the Matsuno 
scheme. This scheme has second-order accuracy, but con- 
tains some damping, especially for the short wavelengths 
(Richtmyer 1963). One cycle of this scheme, which is 
twice as fast as the Matsuno scheme, is summarized below 
for the equation aa/at=F(a) : 

1. Given an. 
-zv -5 

xu -zy 2. Compute the first step according to anfl=an + A t  
X F(a"). 

- 

Z Y  3. Compute the second step according to anf2=an 

Experiment 13 is identical to experiment 11 (table 1) 
except that the two-step Lax-Wendroff scheme is used 
instead of the Matsuno scheme. The energy budget for 

(50) +2AtF(an+'). - -w_.-u+--z 
gh (M11 h, M12 hu); 

the forms corresponding to (10') and (11') are analogous 
and are not presented. 

406-039 0 - 70  - 4 
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experiment 13 is shown in figure 15 and summarized in 
table 1. I n  contrast to previous variable grid experiments, 
the energy budget decreases mono tonically through 1800 
steps, with only a slight increase thereafter. After 2000 

S I  I 
I I I 

N =?io0 
I 

1 3001 A X  a 4 0 k m  CONSTANT GRID T=  25 HOURS 
H-1000 (m) for 

X ( K m )  a 

r~ 1 I I I I I 1  

i N= 1000 
3001 B X  = 2 0  km VARIABLE GRID T.25 HOURS 

r Y 2001 
Y 

45 
-300 -200 -100 0 100 200 300 

X ( M m )  b 
FIGURE 1 2 . 4 4  the height field after 25 hr (500 steps) for experi- 

ment 9 (constant resolution=40 km) and (b) the height field 
after 25 hr (1000 steps) for experiment 7 (variable grid, maximum 
resolution= 20 km). 

steps, the changes from the initial values of both the 
available potential and kinetic energy are negative and 
less than 0.1 percent of the inithi values. The shortwave 
damping properties of the two-step Lax-Wendroff scheme 
appear, therefore, t o  improve the stability of the calcula- 
tions by preventing the rapid accumulation of energy in 
the 2Ax and 2Ay wavelengths. At the same time, the 
large-scale height and velocity distributions (not shown) 
are in good qualitative agreement with the true steady- 
state solutions. 

5. SUMMARY 
A two-dimensional nonorthogonal variable grid is 

presented that has maximum resolution at  the center and 
minimum resolution near the boundaries of the grid. The 
variable grid is derived from a continuous transformation 
that maps a rectangular computational domain, D’, into 
the physical x-y domain, D, enabling the degree of vari- 
ability to be easily changed in numerical experiments. By 
using this transformation, the equations of motion for a 
free-surface model are transformed in terms of the in- 
dependent space variables in the computational domain 
D’. Numerical integrations with a fixed number of grid 
points utilize the variable grid to investigate (1) increasing 
the domain size with a fixed resolution at  the center and 
(2) increasing the resolution a t  the center with a fixed 
domain size. 

Three finite-difference analogs for the space derivatives 
and three time-integration schemes are tested for the 
variable grid. Preliminary results using the leapfrog time 
integration scheme yield inferior results because of the 
presence of high-frequency gravity waves. Most experi- 
ments were conducted using the Matsuno time integration 

X (km) 

FIGURE 13.-Height field after 25 hr (2000 steps) for experiment 10 (varaible grid, maximum resolution=lO km). All closed contours 
around a single grid point are in units of 5 m. 
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FIGURE 14.-(a) the u component field after 25 hr (500 steps) for 
experiment 9 (constant resolution= 40 km) and (b) the u compo- 
nent field after 25 hr (1000 steps) for experiment 8 (variable grid, 
maximum resolution= 20 km). 

scheme which effectively filters the high-frequency waves. 
Most experiments utilize the total energy conservative 
momentum scheme (scheme B, Grammeltvedt 1969) for  
the finite-difference equations. All experiments are carried 
out to  at  least 1000 time steps. 

For a fixed domain size and number of grid points, 
several variable grid experiments show qualitatively 
superior results in the mass and momentum fields com- 
pared to constant grid results. An undesirable feature of 
the variable grid experiments, however, is the gradual 
increase of total energy due to the accumulation of energy 
in the short wavelengths. This difficulty, which is caused 
by the additional nonlinear terms in the forecast equations, 
becomes more pronounced for the more distorted grids. 
However, in all but one experiment, the total energy 
change after 2000 time steps is less than 1 percent of the 
original energy. 

Finally, the variable grid that has the maximum 
distortion is tested with two additional finite-difference 
schemes and one additional time integration scheme. 
Writing the continuity equation in a mass conservative 
form analogous to  the box method yields a substantial 
improvement in the behavior of the available potential 
energy budget. Using an averaging scheme similar to  
Shuman and Vanderman’s (1966) also yields an improve- 
ment, but at the expense of doubling the computational 
time. I n  the final experiment, the mass conservative form 
of the continuity equation and the two-step Lax-Wendroff 
time integration scheme yields very good results that show 
virtually no change in total energy over 2000 steps. 

The experiments show, therefore, that although care 
must be taken with the nonlinear terms, the variable 

160 - 
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0 200 400 600 800 I000 1200 1400 1600 1800 2000 

N 
FIGURE 15.-Changes from initial value of the sum of kinetic and 

available potential energy for experiments 7 and 9 through 13. 
See table 1 for the summary of cach experiment. 

grid may be effectively used in certain physical problems 
to economically gain resolution at  the center of the 
domain, at least for the time range considered here. 
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